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The geometry of double-scattering waves in 3-3 collisions? 

S Servadio 
Dipartimento di Fisica, Universiti degli Studi di Pisa, piazza Torricelli, 2, Pisa, 56100 Italy 

Received 16 November 1984, in final form 17 July 1985 

Abstract. The geometry associated with the double-scattering contribution to elastic 3-3 
collisions is investigated in detail. This makes it possible to separate clearly the dynamical 
content of the leading asymptotic term contributed by on-mass-shell intermediate states 
and to calculate by quadratures the next-to-leading term. The relevance of the present 
results is discussed in connection with flux calculations. 

1. Introduction 

Despite its modest direct experimental relevance the elastic 3-3 scattering has a 
bearing on several different questions of physics. Due to unitarity, the elastic scattering 
is always linked to inclusive reactions of the type 3-anything, whether the scattering 
objects are ‘elementary’ particles, atoms or molecules. Its role must then be unam- 
biguously assessed even if one is more interested in inelastic processes. 

A different but related problem is the calculation of the third virial coefficient for 
a real fluid. Here one must assess the weights of a complete set of states and thus the 
relative weights of asymptotically different states. 

Both the above problems have been solved within the framework of non-relativistic 
quantum mechanics (Faddeev 1965, Buslaev and Merkurev 1970) in the p-space 
representation, but the answers are difficult to find from an x-space point of view 
(Gerjuoy 1971) and perhaps not phrased in the most useful manner (Kirzhnits and 
Takibaev 1978). Only after Faddeev, in his fundamental work, clarified the p-space 
singularities of the elastic scattering was it possible to successfully investigate the 
x-space structure of the associated wavefunction (Merkurev 1971, Nuttall 1971) and 
ask questions about a meaningful definition of a three-body cross section (Newton 
and Shtockhamer 1976, Potapov and Taylor 1977a, b) and the so-called ‘optical 
theorem’ for 3-3 scattering (Servadio 1981b). 

In the early stages of this work it was already evident that the study of the 
wavefunction should be pushed one step further than before (Servadio 1981a) in 
order to be able to take the study of the fluxes to the final 0 ( 1 )  order. In so doing, 
however, I became convinced that the double-scattering wavefunction had not been 
cast into the best shape. In the leading terms of its asymptotic expansion one could 
not recognise the geometry that the asymptotically free wave must embody: namely, 
the fact that as the wavefront progresses the intensity must decrease according to some 
expansion coefficient related to the radii of curvature of the wavefront. When reinter- 
preted along these lines, each scattering term should be analysed by separating its 
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geometrical from its dynamical (t-matrix) contents. Moreover, such a representation 
should be very illuminating when calculating the next-to-leading-order terms of the 
asymptotic expansion by imposing the asymptotically free wave equation. 

Soon after, a quite general theorem was proved (Servadio 1983) stating that each 
scattering term is characterised, within angular sectors of uniform asymptotic behaviour, 
by a wavefront that is either a spherical or a K = 0 ruled surface. 

The purpose of the present paper is to corroborate explicitly all these contentions 
on the double-scattering wavefunction @ 1 3 .  The main new result is the formula for 
the amplitude A, of the next-to-leading order as given by (5.1). This formula is, apart 
from elementary quadratures and cancellations to be explained in the appendix, quite 
explicit and gives A,  in terms of the dynamical (t-matrix) factor 2(5) and the geometry 
(the radii R , )  of the wavefront. This separation of dynamics from geometry is very 
important when the term (Al /p3)  is used in 0 (1 )  flux calculations, as will be briefly 
commented on in § 6. 

The plan of the paper is as follows. In § 2 we shall first show the full asymptotic 
structure of @ I 3  into ‘non-dangerous’ directions in which the particles are asymptotically 
free. In § 3 we shall investigate the bearing of the wave equation on @13. The eikonal 
equation for the wavefront profile function and Luneburg’s recurrence relation for the 
amplitude will be the main results. The geometry of the ruled surface corresponding 
to the double scattering with on-shell intermediate state propagation will be fully 
shown in § 4. The leading amplitude will be written in geometric terms along the same 
lines as Keller’s geometrical theory of diffraction. In § 5 the next terms will be obtained 
by integration of the recurrence relation and unexpected logarithmic terms will appear. 
Finally, the appendix proves the complete cancellation of the logarithmic terms stem- 
ming from the following geometrical fact: the ruled surface, with the parametrisation 
induced by its lines of principal curvature, is embedded in the larger space & which 
is flat. 

2. Double scattering to higher order 

Let us consider, within the framework of non-relativistic quantum theory, the system 
of three particles interacting by pair potentials, initially in a state of definite momenta 
as viewed from their centre-of-mass system. 

The masses are taken to be equal, m, = 1; if r, and pz are the positions and momenta 
of the particles, relative coordinates and conjugate momenta can be chosen in a standard 
form (Servadio 1981a) as 

- 
X, = 4 $ r l ,  P ,  =&,, 
y ,  = ( l / f i ) ( h  - 4, Qi = ( l / f i ) ( ~ 2 - ~ 3 ) ,  

or any cyclic permutation thereof related by a linear transformation. In the six- 
dimensional space of vectors (XI, Y , )  equipped with the metric geP = Sa, one can write 
Schrodinger’s equation and study the asymptotic properties of the scattering solution 
as the hyper-radius p + CO. The kinetic energy operator is just the Laplacian V 2  (from 
now on V will denote the 6-gradient). 

One can also pose (Servadio 1981b) the problem of conservation of the flux 
associated with the current j = Re(iV*VV). The region around the origin corresponds 
to all three particles being close and interacting. Away from the origin along a ray 
the relative distances increase so that, if the pair potentials are of finite range, particles 
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are eventually free. This is so provided we avoid the special directions in which two 
particles stay close while the third one is receding. As is well known, this is an 
unavoidable complication (Ginibre 1977) that has already been dealt with (Merkurev 
1971, Nuttall 1971). 

Very peculiar singularities are those associated with the possibility of double 
scattering (see figure 1) proceeding via an on-mass-shell intermediate state. From an 
x-space point of view it corresponds to each pair potential being translationally 
independent of the position of the third particle so as to appear effectively of infinite 
range in & (see figure 2). As a consequence the (connected) double-scattering 
diagram falls off as O ( P - ~ )  when p-m,  and hence more slowly than the O ( P - ~ / ~ )  of 
the Green function. The distentangling of on-mass-shell from off -mass-shell contribu- 
tions is a delicate process that has also been solved (Servadio 1982). 

To complete the calculation of the 0 (1 )  flux terms through the spherical surface 
of radius p ,  and hence for a final evaluation of the optical theorem (Servadio 1981b), 
one also needs the O ( P - ~ )  terms of the wavefunction. 

We shall first recall (Nuttall 1971) the wave ( P I 3  describing a collision between pair 
(1,2) followed by a collision between pair (2,3). Let (P ,  Q )  stand for the final momenta 
(PI, Q1), let (P, Q’)  stand for the initial ( P i ,  Q S )  and let E = P”+ Q’2 be the energy 
of the incoming state. In terms of (XI, Y l ) ,  which we shall denote by (X, Y), @ I 3  is 
given by 

TL3 
E -P2-Q2+iE 

( P I 3  = (2r)-9/23-3/2 I d3P d3Q exp[i(P. X +  Q .  Y ) ]  

where 

Ta3 = ( Q l t , ( E  - P2)1-3-1/2(2P+ P))(3-1/2(2P+ P’)lf3( E - P’2)IQ’) 
D ( P ) + i s  

i-r-2EE: 2 1 

Figure 1. The double-scattering process @ I 3 .  

R h  

“2 3 

v12 

U 
Figure 2. Two pair potentials in & and parallel double-scattering ‘rays’ 
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and 

D ( P )  = $ [ $ ( E  - P ' * ) - ( P + + P ' ) ] ,  

By choosing as the new integration variable the vector 9 = P + + P ' ,  in terms of which 
D( P )  = +( Qi - S2) where Qo = f&Q', the position of the pole is made independent of 
the angles of 9 and Q. This makes it possible to evaluate asymptotically as p +CO, at 
fixed S, the inner fivefold integration in I d S  d2flg d3Q essentially by picking the 
overall energy pole contribution and adopting the stationary phase method for the 
four other integrations. 

Since each one-dimensional stationary phase integration gives an asymptotic series 
with leading term 0 ( p - ' l 2 )  and subsequent terms spaced by negative integer powers, 
the fivefold integration gives the asymptotic series 

o ( ~ - ~ )  + o ( ~ - ~ )  + o ( ~ - ~ )  + . . . . 

e x p [ i p w * ,  9)i 
Each term carries the same phase factor 

and the intermediate state energy pole 

( D ( P )  +is)-'. 

(Refer to Servadio (1981a) for the detailed results we are making use of.) 
The outermost d B  integration can be performed by Bleistein's method (Bleistein 

1966, Bleistein and Handelsman 1975) on each term of the series exactly as on the 
leading term (Newton and Shtockhamer 1976). This method provides for each integral 
of the type 

its full asymptotic expansion as a sum of contributions (a)  from the pole at B =  Qo 
with phase 

(b) from the stationary point S* at which 

exp[iph(O*, Qdl, 

dh(  e*,  B ) / d S  = 0 

with phase 

exp[iph( e*,  S * ) ]  

and (c) matching terms proportional to 

F(p'/21h(e*, p*) - we*, Q ~ ) I ' / * )  exp[iph(e*, Q ~ ) I  
where F ( .  . .) is Fresnel's integral defined by 

F (  t )  = exp(iT2) d7: r 
The stationary value 9* depends, for given incoming kinematics, on the direction 

in & along which p + q  but the phase function h ( O * ,  9*) is independent of it and 
equals E'", so that 

exp[iph(O*, s*)] = exp(ipE''2) 



Geometry of double-scattering waves in 3-3 collisions 729 

represents a spherically outgoing wave. The pole at P =  Qo determines a wholly 
different phase profile which we shall study in great detail in 0 4. 

Let us recall the leading terms of the overall expansion. Introduce vectors P and 
Po defined as the values of P = P - iP ’  when P is, respectively, ( Qo; e*( Qo), 0) and 
(9*; e*(P*), 0). The vector Po is equal to ( X / P ) E ” ~ .  The graphical construction 
reproduced in figure 3 translates Nuttall’s system 

x -  
Y ( E  - p2)l/2 - = P + p ( P + p’) 

D ( P )  = 0 ( 2 . 2 )  

which embodies the stationarity of the phase while keeping the intermediate state on 
the energy shell. Here p is a Lagrangian multiplier chosen to be positive. Define 

where d 2  = E - p 2  and w =tan-’( Y / X ) .  We can write @ I 3  as (Servadio 1981a) 

where 9 ( P )  = P .  X + d Y  is the phase function for which S(P) = p h ( B * ,  Qo) and 
.T( Po) = pE Moreover 

Figure 3. Nuttall’s construction for equations (2.1) and (2.2). 
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with 

f(P) = G ( w ,  i ) l t ( P )  

It( P )  = (. . .I t l l .  . .)(. . .I t 3 j .  . .). 
and 

The value of p depends on the direction along which p + oci and O(p)  = e( 9* - Qo). 
In those directions where p = 0 the stationary value 9* coincides with the pole value 
Qo; such directions represent, over the spherical surface p = constant, a four- 
dimensional manifold called the ridge (Newton and Shtockhamer 1976) across which 
there is a discontinuous asymptotic behaviour of @I3. 

We shall from now on denote the non-spherical phase by E 1 ’ 2 u  = 9(P) and write 
equation (2.4) in the more compact form 

0 1 3  - exp(iE I i 2 a )  exp( i7r/4) F[ELi2(p - u)’I2]) 

P 2  

Firstly, we wish to point out that although the amplitude A. is known in terms of 
the momenta and of the ‘direction of observation’ in & its actual structure, as can be 
seen from the awkward expression for G ( w ,  X ) ,  does not lend itself to any interpre- 
tation. 

Secondly, away from the ridge one can substitute for F its asymptotic expansion 
for large arguments and cancel it against the other sgn(P) term. The resulting wave 
behaves as 

Retracing the steps we have followed in the construction of the leading term we 
find that essentially the same scheme is replicated to higher orders, namely: 
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Going to infinity (away from the ridge) the F ( .  . .) waves cancel against the other 
sgn(p) terms and we are left with 

exp( i E ” ’ U )  A A  exp(iE”2p) 
P Z  (Ao+2+2+.  P P2 . . ) O ( p ) +  P S I Z  

@‘3 z 

This is a superposition of a wave system of phase profile exp(iE”2u)  with a leading 
anomalously large rate of decrease O ( P - ~ )  present only on the p > 0 side of the ridge, 
and an everywhere present spherical system. The reader should keep in mind that the 
estimate does not hold where p -0, so that the discontinuity is only apparent. 

3. Differential equations 

Any multiple-scattering wavefunction must asymptotically satisfy the Helmholtz 
equation if the interactions are of finite range and a direction is considered such that 
the pairs are asymptotically well separated. Then 

(3.1) (vz+ E p i 3  = 0 

must hold for @ I 3  given by equation (2.5). Recalling the expansion 

+. . .) F(t)----- 2 i t  (I+%+-+= 
exp(it2) 1 1 x 3  1 x 3 ~ 5  

one can check that for Fresnel’s function differentiation commutes with asymptotic 
exDansion. that is 

a“ exp(it2) 1 1 x 3  1 x 3 ~ 5  
at.[ 2it ( 21t (2it (21t2)3 

F(,,)(t)-- - 1 +-+-+-+. . . 

for any n. It follows that equation (3.1) also holds for @I3 as given by equation (2.6) 
and, in fact, separately for the two component systems: 

(3.2) 

Equation (3.3) can be dealt with by writing the Laplacian in spherical coordinates 
exactly as in Sommerfeld’s discussion (1949) of the R3 case; U,,,, is uniquely determined 
by U,, through a recurrence relation which is algebraic in U,,,,. 

More complicated is equation (3.2) for the contributions from on-mass-shell inter- 
mediate states and this will be discussed in detail. Before doing so let us note that (T 

is a homogeneous function of degree one, i.e. a ( A X ,  AY) = Aa(X, Y ) ;  in fact it is the 
phase of the Fourier transform with a definite prescription for picking poles and 
stationary phase contributions. Solving equation (3.2) asymptotically we find the system 

V u . V ( T =  1, (3.4) 
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Equation (3.4) is thezikonal equation in free space; it states that the phase function 
U has unit gradient N = V u  everywhere. 

In a recent paper (Servadio 1983) the following was proved. 

Theorem. Let U be homogeneous of degree one and of unit gradient. The inverse sets 
u-'(s) are parallel surfaces; if not spherical they are K = 0 (ruled) surfaces. 

In our case the wavefronts u-'(s) must be ruled surfaces with at least one infinite 

Equation (3.5) is called the transport equation; sometimes it is called the Liouville 
radius of curvature. 

equation. Its meaning is made clearer by recasting it into a divergence form as 

V *[(Ao/p2)2j'G]=0 

or, by introducing the directional derivative V,+ = fi. V, as 

V2u = - V ~ [ l ~ g ( A o / p ~ ) ~ ] .  (3.7) 

The inverse sets U - ' (  s)  being a family of parallel surfaces, it is useful to parametrise 
them by surface coordinates which take the same values on all points homothetic with 
respect to the origin. We denote them collectively by p .  Each point of & is in 
correspondence with the pair (s, p )  which will be referred to as its eikonal coordinates, 
s playing the role of the optical length. It is well known that the radii R, of u- ' (s)  
increase $nearly with coefficient one along the rays which are the (straight) integral 
lines of N :  each R, can be written as R, = s i .  9 ? l ( p ) .  

It is then easy to prove the following. 

Theorem. The Laplacian of the eikonal function is equal to the trace of the Weingarten 
map: 

1 
I R ,  

v*u = c -. 

The proof is trivial in a suitable coordinate system defined in terms of the phase 
profile and its directions of principal curvature (Somigliana 1919, Keller et a1 1956). 

Equations (3.7) and (3.8) together imply 

Since the wavefront is K = 0, but otherwise arbitrary, the amplitude A. must have the 
following structure: 

(3.9) 

This in turn implies the occurrence of only four finite radii of curvature. 
Equation (3.6) is a first-order partial differential equation for A ,  involving only the 

longitudinal V fi derivative. Essentially the same recurrence relation has often been 
discussed in the high-frequency asymptotics of wave mechanical problems (Keller et 
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a1 1956), in which context it is called Luneburg’s recurrence relation. Its formal 
integration can be performed easily: 

(3.10) 

where jy d r  stands for integration along the ray from the point at which the left-hand 
side is evaluated to infinity (s is the optical length at the observation point). Once A, 
is given, the calculation of AI is reduced to quadratures for which it is useful to write 
the Laplacian in eikonal coordinates. In 5 4 we shall study the geometry of the 
double-scattering ruled system and identify a quite natural set of eikonal coordinates. 

4. Ruled wavefronts. The radii and the ridge 

The ruled system is characterised by the phase factor 

exp(iE”2cr) = exp[ i .~ (P ) ]  

where 

9 ( P )  = P -  X + ( E  - P 2 ) ” 2  Y 

and P is the solution of the system ( 2 ; )  and ( 2 . 2 ) .  The vector P is a function of the 
point (X, Y ) :  it does not depend on Y, it is the same for allApoints homothetic with 
respect to the origin, it alyays lies on the plane of P‘ and X and it is parallel to X 
only if /3 = 0. The vector N is 

I?=VY(P)/IVY(P)l =E-’”(P, d?),  

As its integral lines are straight rays it is constant along the rays. 
If p = 0 it is easy to see that N = p - ’ ( X ,  Y )  which is radial from the origin. The 

points where p = 0 are those at which the ruled surface is tangent to the sphere. It 
follows that the p = 0 point of a ruling is its point closest to the origin, the distance 
being s; it will be called the foot of the ruling. The set of the foot points of all the 
rulings of a given eikonal surface is the ridge of that surface; it is a four-dimensional 
manifold. 

Since we know tha! the eikonal surfaces must be K = 0 with the rulings as lines of 
vjnishing curvaLure, N must be constant along each ruling as must the vectors P and 
Y. Let us call EA the unit vector field along the rulings and A the distance from thz 
foot (see figure 4). The vanishing of the curvature is expressed by VgAI?= 0 and N 
is constant over the whole two-dimensional plane generated by $ and EA. 

Let pR denote vector connecting the origin to the ridge. Any position vector 
p = (X, Y )  can be decomposed in a unique manner by first going to thf appropriate 
foot point and then moving along the ruling according to p=pR+AEA ( A > O  will 
correspond to /3 > 0). 

It is useful to follow Nuttall’s construction in figure 3 while going down a 
ruling to its foot point. The point B stays fixed holding P constant while the segment 
CB shrinks to zero; the vector X remains on the original plane formed with the polar 
axis P’ (constant c p x )  while be;ding over (changing e,) so as to become parallel to 
P ;  the ratio X / Y  decreases; Y stays fixed. In terms of the spherical coordinates 
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Figure 4. Eikonal coordinates. The locus p = O  is the four-dimensional ridge on the 
spherical surface lpRl = s. 

(p ,  w ,  Ox,  cpX,  By, c p Y )  where w =tan-’( Y / X ) ,  as P L O  along a ruling 

( p ,  w, 0x9 (OX, BY, ( O Y )  ( P R ,  O R ,  OR, ‘PX, OY, (OY) 

where the limiting values pR, wR, OR have been given a suffix to remind us that they 
are ridge values. Recalling that the ridge of u-’(s) lies on the sphere p = s we can 
identify pR = s, regard wR as a function of OR and take ( O R ,  pox, By, ( p Y )  as the most 
natural parametrisation of the ridge. Ridges of different surfaces are obtained from 
one another by radial displacement; they are parametrised by the same (OR,  cpx, Oy, qY). 

In terms of the unit vector fields associated with the coordinates (p ,  0, O x )  

the ruling vector field EA has the following decomposition: 

E A  = Vpu*, + V,u*, + vgiie 

It can best be computed on the ridge where vp vanishes; we found 
A A A *. 

EA = ( -vu sin w R ( X ) R +  v,(aX/aex),; v, cos wRY)  

where 

- P2E ‘/2 - P,d 
v - -  vu = - 

e - IPI( E - P:)1 /2 ’  IPI(E - P:)l’2’ 

wR = cos-’( ]PI/ 
P1 and P2 are respectively the radial and the tangential components of P in figure 3. 
Finally, the vector pR pointing to the ridge can be written as pR= 
( s  cos w R ( g ) R ,  s sin OR?). The set (s, A, OR, cpX,  ey, (cy) constitutes an orthogonal 
coordinate system in which A is the length along the ruling from its foot point identified 
by (OR,  wx, By, ( p Y )  on the eikonal surface of given s. 
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It is then straightforward to derive all the remaining properties of the eikonal 
surfaces. The coordinate vector fields have moduli 

1 = I EA 1 = 

The vectors EA, Eo,, E,, Eo, and E,, also give the directions of principal curvature. 
The associated radii are 

RA = CO, 

R,, = Roy. 
The latter representation in terms of eikonal coordinates shows the linear variation 

of each radius along the rays and along the rulings, as it had to be. Moreover all the 
radii become equal on the ridge. 

The Gauss curvature K is zero since RA = a, but it is useful to consider what might 
be called the ‘reduced’ curvature 

This quantity is related to the expansion of an infinitesimal piece of the surface as it 
is mapped by normal variation (Thorpe 1979) and so it must be present in the amplitude 
Ao. By looking at the amplitude as it was written in equations (2.3) and (2.4) one 
recognises that 

This is in the form of equation (3.9) with 

It affords a separation between the dynamical and the geometrical contents of the 
amplitude. 

The reader should note that the dynamics (t-matrix elements) is contained in 

I?( F) = ( ?d 1 t l (  d2)I - 3 ~ ’ / ~ ( 2 P ‘ +  P))(3-”’(2P+ P’)l t3( Q f 2 ) 1  Q’) 
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which is only a function of fi. Thus, the dynamics is the same both along a ray and 
along each ruling. The former property was obvious to start with since a ray emerges 
after a well determined succession of binary scatterings. The latter property corresponds 
to the rays through a ruling having had the same dynamical history; they have always 
been parallel, so to speak (see figure 2 ) .  

Since one is ultimately interested in the dynamics, a slightly different choice is to 
be considered. The angle OR identifies P on the circle of Nuttall’s construction (at 
given c p x )  and consequently also the final vector 3-’”(P+P‘)  of (. . . It1 . . .), but the 
angle Oi between 2 P + P ’  and the polar axis P‘ appears to be a better choice. The 
Jacobian is 

aeR/aei = P ~ Q ~ / ~ P ~ ~ .  

(4 A, 51, 52 ,  53, 541,  

el = COS ei, 
t3 = COS By, 

We shall then stick to the choice 

where 

5 2  = cpx, 

5 4  = cpn 
play the role of ridge coordinates. The radii of curvature are obviously unchanged. 
The coordinate vector fields are parallel to the former ones, with moduli 

P S I  = El= 1, 

where 

and c1(t1), c2(&), ~ 3 ( 5 1 )  are the same as in (4.1). From now on, the finite principal 
radii of curvature will be denoted by 

Note the functional indepengence of the h and R on (5, t3, 14); it stems from the 
rotational symmetry in ( ( o x ,  Y) of the eikonal surface. The volume element is 

with 

R i = s + c , ( t 1 ) A .  

d3X d3 Y = & ds d h  d t ,  d t2  d t 3  d t 4  

The Laplacian is 
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These formulae provide the necessary machinery to integrate Luneburg’s recurrence 
relation for A,. 

5. Integration along the rays 

We shall from now on adopt the notation 

AdP2 =$(5)@/’(s, A, 5’) 
with 

1 1 
II, R : I2  - n,  ( s  + c, ( 

%‘I2( S, A, t,) = - - 

independent of (&, &, &) and 

$([) = 2-9/2.n-l/23-l/2 EI?( P )  
Q0(d2+ P : ) ’ / 2  

independent of (s, A ) .  The integrated recurrence relation was 

(3.10) 

The first two terms of the V2 operator as given in equation (4.2) are easily dealt 
with since they carry a/& and a/aA derivatives. Also straightforward are the last three 
terms carrying alae2, ala[, and ala(,. We find 

A, A. -i 1 l+c;((,) _- 1 p3 - p z  2E”’(4? 
R, 2A 

(5.1) 

The quadratures are elementary since the integrands are rational functions of r. Note 
that (5.1) contains logarithms of the radii, but many more such logarithms are obtained 
by integrating the a/a& terms. The functions log( R,/ RI)  are homogeneous of degree 
zero in p and do not contradict the inverse power law behaviour of the wavefunction. 
They are, however, surprising and ‘unwanted’ for the following reason. 

An alternative derivation of A ,  could have been carried out by improving the 
step-by-step asymptotic evaluation of the multiple integral outlined in 8 2 for the 
leading term Ao. Since the stationary phase method and Bleistein’s method involve 
higher and higher derivatives of the phase and of the integrand no such log(R,/R,) 
could ever arise. Note that log(R,/R,) vanishes on the ridge where the finite radii of 
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curvature all become equal; this made us expect the occurrence of an enormous 
cancellation of terms. 

Let us give in detail the overall coefficient of log RI  as occurring in (5.1): 
AI A,, -i 1-5: - .  . .+T - - 
P p 2E112 2h:A 
_-  

Here stands for i = 2,3,4; c: = aci/agl, cy = a2ci/a5: and hi = ahi /a&.  In the appendix 
we shall prove that the sum in the square brackets vanishes. 

One can similarly spell out the overall coefficients of log Ri with i # 1 and prove 
that they vanish. The essential mechanism for this cancellation is exactly t‘he same as 
for i = 1. In fact the proof in the appendix makes use only of the fact that the ruled 
surface is immersed in a larger Euclidean (flat) space, and thus parametrised in such 
a way that 

Ri=s+ci (5)h .  
We have also checked that integration of the recurrence relation gives exactly the 

same answer as the alternative procedure of step-by-step evaluation to higher order. 
The fact that the two procedures yield identical results is not guaranteed on general 
grounds. While it is true that an asymptotic expansion has a unique assignment of 
coefficients once the asymptotic sequence is given (Erdelyi 1956), it is not at all clear 
that the multiple integral can be dealt with by successive applications of one- 
dimensional evaluations. To be honest, the check has here been carried out for those 
terms of AI that carry first- and second-order derivatives of two-body t-matrices. These 
must be considered as the most interesting from a physical point of view; their 
occurrence amounts to a non-trivial trace of two-body dynamics in the ‘truly three-body 
scattering’ (Servadio 1981b). However, there can be no doubt that the check extends 
to the full A I  amplitude. 

6. Conclusions and outlook 

Let us comment on the actual usefulness of the present point of view. In a previous 
paper (Servadio 1981a) the O ( p )  fluxes of the whole 6-current were calculated, and 
their cancellation was proved. Each term was proportional to the same one-dimensional 
integral independent of the dynamics. In view of the present paper, this integral is to 
be interpreted as a summation over parallel rays through the same ruling. The 
integration, which incidentally can be done by quadratures, admits the following 
appealing interpretation. 

A point specified by ( p ,  U, 2, 9)  corresponds, for the double-scattering wave, to 
well defined momenta. Retrace (see figures 2 and 5 )  the representative point back to 
make the final scattering pair (2,3) coincident (as if with pointlike interaction). The 
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Figure 5. The intercollision time T in @ I 3 .  

distance between the pair (1,2) can be calculated in such a configuration and then the 
point can be traced back further to make (1,2) coincide. Define the intercollision time 
T as the time between the two pointlike interactions. To be explicit, T is given by 

~ = i p ( p  sin o ) / d .  

Consequently, the integrand of the O(p)  fluxes is none other than the exact differential 
dT; the integration runs from 

Conservation of the flux associated with the whole 3-3 wave F is a consequence 
of Schrodinger’s stationary equation. Since to calculate the O( 1) flux terms (a program 
for which is about to be completed) V is needed to a higher order, one would prefer 
to use the differential equation with as much geometric understanding as possible. If 
one does so, one observes many cancellations among the O( 1) terms. These cancella- 
tions are parallel to those encountered in the follow-up fluxes to the optical theorem 
in R3 (Servadio 1971). As in that context (Buslaev 1967), their occurrence is most 
naturally clarified by using the differential equation point of view. 

The left out O( 1) terms arising at the second-order multiple-scattering level have 
a very interesting structure in terms of two-body time delays and they are proportional 
to the same one-dimensional integral, which can be evaluated by quadratures, over 
parallel rays (which was also the case for the O(p)  terms, although with a different 
quadrature). 

The occurrence of such integrations over parallel rays was to be expected for the 
following reason. The ultimate result for the flux calculation of the whole 6-current 
in x-space is a unitarity count of all the outgoing momenta. Viewed in p-space, in the 
CM frame and after conserving the kinetic energy, there are such possibilities for 
a three-body system. If, for example, the double-scattering sequence has been given, 
the dimensionality is reduced to a4: one can only specify the outgoing directions of 
the two pair collisions. The x-space calculations then have one ‘spurious’ dimensional- 
ity connected to the notion of rays that are different even if parallel to one another, 
a distinction that cannot obtain in p-space. 

This is the fundamental reason why the geometric point of view, and the detailed 
investigation of the actual structure, are so useful when considering the contribution 
from the lowest-order scattering terms and, in particular, the double-scattering pro- 
cesses. 

= 0 to T,,, = f f ip ( l /Q’ ) .  

Appendix. The Riemann tensor and the cancellations 

Let us summarise a few facts. We have interpreted geometrically the recurrence relation 
for A ,  and the quadratures have generated a host of log(R,/R,) terms. Such logarithms 
are undesirable; in any case, they vanish if the radii are degenerate. We then suspect 
that there is a quite general geometric reason for a cancellation of such logarithms. 
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Look now at the overall coefficient of log R, as in ( 5 . 2 ) .  If it vanishes, that 
corresponds to a differential relation on the radii of curvature of a K = 0 surface. Such 
a relation must, in a sense, be universal, holding for any such surface in any dimension- 
ality. 

To be a little economical on notation, let us assume the surface to be immersed in 
%, so that there are only two finite radii of curvature (the proof in & runs along the 
same lines). Let the element of length in & be 

(d1l2= ( d ~ ) ~ + ( d A ) ’ + [ h i ( 5 ) ( ~ +  ~ 1 ( 5 ) A ) I ~ ( d 5 ) ~ + [ h 2 ( 5 ) ( ~ +  c2(5)A)12(d~)’  
in terms of the differentials of the eikonal coordinates (s, A, 5, 7). The radii are 
Ri = s + ci(5)A for i = 1 ,2 .  The vanishing of log R,  would then amount to 

We then state the following. 

Theorem. Equation (Al)  holds by virtue of the flatness of the space in which the ruled 
surface is immersed. 

Consider the Riemann tensor (Eisenhart 1949) 

Rl,,k = q{ ax-’ ik I ]  -L{ axk ij + { ;]{ ni,l- { ;}{ ik} 
where 

are Christoffel’s symbols in terms of the metric tensor. The Riemann tensor of % is 
zero and this is a coordinate-independent statement. We then compute its components 
in the eikonal coordinate system (s, A, 5, 7) with the diagonal metric tensor 

g s s  = g A A  = l ,  
gtc = [h , (5) (s+  C l ( 5 ) A ) l 2 ,  g,, = [h2(5)(s+c2(5)h)l2. 

It is an easy exercise to find (the primes here mean differentiation a/ag) that 

and 

RfVc ,  =- h: s+c2A - - ( S + C ~ A ) - ~ C ; A - - - C ~ A  h,” h; 
h: (s+c1A)’[ h2 h2 

3 
c ~ A )  --(s+ cs c ~ A ) +  c ~ A  

C l  - c2 

A - ~ ~ ( S + C , A ) ( ~ + C I C ~ )  . +- 
c1- c2 
c;c; 

Since = 0 ,  we have the equation 
( ~ 1 -  ct)h;- h 2 ~ ; =  0 

holding at all points; so also 

(a/at)[(c, - c2)h; - h A 1 =  o 
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Substituting (A2) and (A3) into the identity 

one completes the proof of (Al ) .  
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